home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Graphics Plus
/
Graphics Plus.iso
/
amiga
/
modelers
/
t3d
/
uvsurf.lha
/
NiceEquations.txt
next >
Wrap
Text File
|
1992-09-12
|
3KB
|
228 lines
Bumpy Wave
X = cos u * (4+cos v)
Y = sin u * (4+cos v)
Z = 4*sin(2*u) + sin v*(1.2-sin v)
0 < u < 2*pi
0 < v < 2*pi
Enneper's Surface
X = u * (1+v*v) - u*u*u
Y = v * (1+u*u) - v*v*v
Z = u*u - v*v
-1.4 < u < 1.4
-1.4 < v < 1.4
Mobius Strip
X = (.5 + u * cos(v/2)) * cos v
Y = (.5 + u * cos(v/2)) * sin v
Z = u * sin(v/2)
0 < u < 2*pi
0 < v < 2*pi
Roman Surface
X = cos v * sin(2*u)
Y = sin v * sin(2*u)
Z = sin(2*v) * (cos u)^2
0 < u < pi
0 < v < pi
Snails
X = cos u * (exp(u/10) - 1) * (1+cos v)
Y = sin u * (exp(u/10) - 1) * (1+cos v)
Z = (exp(u/10) - 1) * sin v
and
X = cos u * (exp(u/10) - 1) * (cos v+.8)
Y = sin u * (exp(u/10) - 1) * (cos v+.8)
Z = (exp(u/10) - 1) * sin v
and
X = cos u*(exp(u/10)-1)*(cos v+.8)*(.9+(max(abs(cos(9*u)/8))(abs(cos(9*u+pi/2)/8))))
Y = sin u*(exp(u/10)-1)*(cos v+.8)*(.9+(max(abs(cos(9*u)/8))(abs(cos(9*u+pi/2)/8))))
Z = (exp(u/10) - 1) * sin v * (.9+(max (abs(cos(9*u)/8))(abs(cos(9*u+pi/2)/8))))
all take
0 < u < 5*pi
0 < v < 2*pi
Zeeman Bracelet
X = cos v * (2+sin(u+v/3))
Y = sin v * (2+sin(u+v/3))
Z = cos(u+v/3)
0 < u < 2*pi, stepping by 2*pi/3
0 < v < 2*pi
Torus
X = cos u * (2+cos v)
Y = sin u * (2+cos v)
Z = sin v
0 < u < 2*pi
0 < v < 2*pi
Helix
X = cos u * (2+cos v)
Y = sin u * (2+cos v)
Z = (u-2*pi) + sin v
0 < u < 4*pi
0 < v < 2*pi
Diffraction Pattern / Ripples
X = u * cos v
Y = u * sin v
Z = (cos(4*u))^2 * exp(0-u)
0 < u < pi
0 < v < 2*pi
Unnamed simple surfaces:
X = cos u * (2 + (cos(u/2))^2 * sin v)
Y = sin u * (2 + (cos(u/2))^2 * sin v)
Z = (cos(u/2))^2 * cos v
-pi < u < pi
-pi < v < pi
X = cos u * (2 + exp u * sin v)
Y = sin u * (2 + exp u * sin v)
Z = exp u * cos v
-pi < u < pi
-pi < v < pi
X = cos u * sin v
Y = cos u * sin u
Z = sin u* sin v
0 < u < pi
0 < v < pi or 2*pi
X = cos u * sin u
Y = cos v * sin v
Z = cos u * sin v
-pi < u < pi
-pi < v < pi
X = cos(2*u) * sin v
Y = sin(2*u) * cos v
Z = cos(u*v) * sin(u*v)
0 < u < 1, stepping by 1
-pi < v < pi, stepping by pi/1200
X = cos u * (4+cos v)
Y = sin u * (4+cos v)
Z = 3*sin u + (sin(3*v) * (1.2+sin(3*v)))
0 < u < 2*pi
0 < v < 2*pi
X = cos u * (4+cos(v/2))
Y = sin u * (4+cos v)
Z = 3*sin u + (sin v * (1.2+sin v))
0 < u < 2*pi
0 < v < 2*pi
X = u * cos v
Y = v * cos u
Z = u * v * sin u * sin v
-pi < u < pi
-pi < v < pi
X = cos u * sin(v^3/pi^2)
Y = sin u * sin v
Z = cos v
0 < u < 2*pi
0 < v < pi
X = cos u * ((cos(3*u)+2) * sin v + .5)
Y = sin u * ((cos(3*u)+2) * sin v + .5)
Z = (cos(3*u)+2) * cos v
0 < u < 2*pi
0 < v < 2*pi
X = cos u * sin v + cos(u+v*3)/3
Y = cos u * sin v + cos(u+v*3)/3
Z = cos v + cos(u+v*3)/3
0 < u < 2*pi
0 < v < pi
Unnamed Complicated Surfaces:
X = cos(3*u) * sin(v)
Y = sin(u) * sin(2*v)
Z = cos(3*v)
0 < u < 2*pi
0 < v < pi
X = cos(cos u) - .75
Y = sin(sin v) - .5
Z = cos(sin(u*v)) - .75
0 < u < pi
0 < v < pi
X = cos(2*u) * sin v
Y = sin(2*u) * cos v
Z = cos(u*v) * sin(u*v)
-pi < u < pi
-pi < v < pi
X = cos u * sin(v*v)
Y = sin u * cos v
Z = sin u * sin v + cos u * cos v
-pi < u < pi
-pi < v < pi